863 research outputs found

    Interplay of spin-discriminated Andreev bound states forming the 0-Ï€\pi transition in Superconductor-Ferromagnet-Superconductor Junctions

    Full text link
    The Josephson current in S-F-S junctions is described by taking into account different reflection (transmission) amplitudes for quasiparticles with spin up and down. We show that the 0-Ï€\pi transition in the junctions can take place at some temperature only for sufficiently strong spin-activity of the interface. In particular, Andreev interface bound state energies in one spin channel have to be all negative, while in the other one positive. Only one spin channel contributes then to the zero-temperature Josephson current. At the temperature of the 0-Ï€\pi transition two spin channels substantially compensate each other and can result in a pronounced minimum in the critical current in tunnel junctions. The minimal critical current is quadratic in small transparency and contains first and second harmonics of one and the same order.Comment: 5 pages, revtex, 2 ps-figure

    Magnetic interference patterns in superconducting junctions: Effects of anharmonic current-phase relations

    Full text link
    A microscopic theory of the magnetic-field modulation of critical currents is developed for plane Josephson junctions with anharmonic current-phase relations. The results obtained allow examining temperature-dependent deviations of the modulation from the conventional interference pattern. For tunneling through localized states in symmetric short junctions with a pronounced anharmonic behavior, the deviations are obtained and shown to depend on distribution of channel transparencies. For constant transparency the deviations vanish not only near Tc, but also at T=0. If Dorokhov bimodal distribution for transparency eigenvalues holds, the averaged deviation increases with decreasing temperature and takes its maximum at T=0.Comment: 6 pages, 6 figure

    Superconducting Junctions with Ferromagnetic, Antiferromagnetic or Charge-Density-Wave Interlayers

    Full text link
    Spectra and spin structures of Andreev interface states and the Josephson current are investigated theoretically in junctions between clean superconductors (SC) with ordered interlayers. The Josephson current through the ferromagnet-insulator-ferromagnet interlayer can exhibit a nonmonotonic dependence on the misorientation angle. The characteristic behavior takes place if the pi state is the equilibrium state of the junction in the particular case of parallel magnetizations. We find a novel channel of quasiparticle reflection (Q reflection) from the simplest two-sublattice antiferromagnet (AF) on a bipartite lattice. As a combined effect of Andreev and Q reflections, Andreev states arise at the AF/SC interface. When the Q reflection dominates the specular one, Andreev bound states have almost zero energy on AF/ s-wave SC interfaces, whereas they lie near the edge of the continuous spectrum for AF/d-wave SC boundaries. For an s-wave SC/AF/s-wave SC junction, the bound states are found to split and carry the supercurrent. Our analytical results are based on a novel quasiclassical approach, which applies to interfaces involving itinerant antiferromagnets. Similar effects can take place on interfaces of superconductors with charge density wave materials (CDW), including the possible d-density wave state (DDW) of the cuprates.Comment: LT24 conference proceeding, 2 pages, 1 figur

    0-pi transitions in Josephson junctions with antiferromagnetic interlayers

    Full text link
    We show that the dc Josephson current through superconductor-antiferromagnet-superconductor (S/AF/S) junctions manifests a remarkable atomic scale dependence on the interlayer thickness. At low temperatures the junction is either a 0- or pi-junction depending on whether the AF interlayer consists of an even or odd number of atomic layers. This is associated with different symmetries of the AF interlayers in the two cases. In the junction with odd AF interlayers an additional pi-0 transition can take place as a function of temperature. This originates from the interplay of spin-split Andreev bound states. Experimental implications of these theoretical findings are discussed.Comment: 4 pages, 2 figure

    Subharmonic Gap Structure in Superconductor/Ferromagnet/Superconductor Junctions

    Full text link
    The behavior of dc subgap current in magnetic quantum point contact is discussed for the case of low-transparency junction with different tunnel probabilities for spin-up (D↑D_\uparrow) and spin-down (D↓D_\downarrow) electrons. Due to the presence of Andreev bound states ±ϵ0\pm \epsilon_0 in the system the positions of subgap electric current steps eVn=(Δ±ϵ0)/neV_n = (\Delta \pm \epsilon_0)/n are split at temperature T≠0T \neq 0 with respect to the nonmagnetic result eVn=2Δ/neV_n=2\Delta/n. It is found that under the condition D↑≠D↓D_\uparrow \neq D_\downarrow the spin current also manifests subgap structure, but only for odd values of nn. The split steps corresponding to n=1,2n=1,2 in subgap electric and spin currents are analytically calculated and the following steps are described qualitatively.Comment: 4 pages, 1 figure, minor stylistic changes, journal-ref adde

    Combined Paramagnetic and Diamagnetic Response of YBCO

    Full text link
    It has been predicted that the zero frequency density of states of YBCO in the superconducting phase can display interesting anisotropy effects when a magnetic field is applied parallel to the copper-oxide planes, due to the diamagnetic response of the quasi-particles. In this paper we incorporate paramagnetism into the theory and show that it lessens the anisotropy and can even eliminate it altogether. At the same time paramagnetism also changes the scaling with the square root of the magnetic field first deduced by Volovik leading to an experimentally testable prediction. We also map out the analytic structure of the zero frequency density of states as a function of the diamagnetic and paramagnetic energies. At certain critical magnetic field values we predict kinks as we vary the magnetic field. However these probably lie beyond currently accessible field strengths

    pi-Junction behavior and Andreev bound states in Kondo quantum dots with superconducting leads

    Full text link
    We investigate the temperature- and coupling-dependent transport through Kondo dot contacts with symmetric superconducting s-wave leads. For finite temperature T we use a superconducting extension of a selfconsistent auxiliary boson scheme, termed SNCA, while at T=0 a perturbative renormalization group treatment is applied. The finite-temperature phase diagram for the 0--pi transition of the Josephson current in the junction is established and related to the phase-dependent position of the subgap Kondo resonance with respect to the Fermi energy. The conductance of the contact is evaluated in the zero-bias limit. It approaches zero in the low-temperature regime, however, at finite T its characteristics are changed through the coupling- and temperature-dependent 0--pi transition.Comment: 12 pages, 12 figure

    Andreev bound states and tunneling characteristics of a non-centrosymmetric superconductor

    Full text link
    The tunneling characteristics of planar junctions between a normal metal and a non-centrosymmetric superconductor like CePt3Si are examined. It is shown that the superconducting phase with mixed parity can give rise to characteristic zero-bias anomalies in certain junction directions. The origin of these zero-bias anomalies are Andreev bound states at the interface. The tunneling characteristics for different directions allow to test the structure of the parity-mixed pairing state.Comment: 4 pages, 3 figure

    The Casimir zero-point radiation pressure

    Full text link
    We analyze some consequences of the Casimir-type zero-point radiation pressure. These include macroscopic "vacuum" forces on a metallic layer in-between a dielectric medium and an inert (ϵ(ω)=1\epsilon (\omega) = 1) one. Ways to control the sign of these forces, based on dielectric properties of the media, are thus suggested. Finally, the large positive Casimir pressure, due to surface plasmons on thin metallic layers, is evaluated and discussed.Comment: 4 2-column pages, LATE

    Retarded Casimir-Polder force on an atom near reflecting microstructures

    Get PDF
    We derive the fully retarded energy shift of a neutral atom in two different geometries useful for modelling etched microstructures. First we calculate the energy shift due to a reflecting cylindrical wire, and then we work out the energy shift due to a semi-infinite reflecting half-plane. We analyze the results for the wire in various limits of the wire radius and the distance of the atom from the wire, and obtain simple asymptotic expressions useful for estimates. For the half-plane we find an exact representation of the Casimir-Polder interaction in terms of a single, fast converging integral, which is easy to evaluate numerically.Comment: 12 pages, 8 figure
    • …
    corecore